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Consider a committee which must select one alternative from a set of three 
or more alternatives. Committee members each cast a ballot which the voting 
procedure counts. The voting procedure is strategy-proof if it always induces 
every committee member to cast a ballot revealing his preference. I prove 
three theorems. First, every strategy-proof voting procedure is dictatorial. 
Second, this paper’s strategy-proofness condition for voting procedures corre- 
sponds to Arrow’s rationality, independence of irrelevant alternatives, non- 
negative response, and citizens’ sovereignty conditions for social welfare 
functions. Third, Arrow’s general possibility theorem is proven in a new manner. 

1. INTR~OUOTI~N 

Almost every participant in the formal deliberations of a committee 
realizes that situations may occur where he can manipulate the outcome of 
the committee’s vote by misrepresenting his preferences. For example, a 
voter in choosing among a Democrat, a Republican, and a minor party 
candidate may decide to follow the “sophisticated strategy” of voting for 
his second choice, the Democrat, instead of his “sincere strategy” of 
voting for his first choice, the minor party candidate, because he thinks 
that a vote for the minor party candidate would be a wasted vote on a 
hopeless cause.l The fundamental question I ask in this paper is if a 
committee can eliminate use of sophisticated strategies among its members 
by constructing a voting procedure that is “strategy-proof” in the sense 

* I am indebted to Jean-Marie Blin, Richard Day, Theodore Groves, Rubin Saposnik, 
Maria Schmundt, Hugo Sonnenschein, and an anonymous referee for their help in the 
development of this paper. 

1 Farquharson [4] introduced the terms sophisticated strategy and sincere strategy. 
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that under it no committee member will ever have an incentive to use a 
sophisticated strategy. I prove a negative answer: If a committee is 
choosing among at least three alternatives, then every strategy-proof 
voting procedure vests in one committee member absolute power over the 
committee’s choice. In other words, every strategy-proof voting procedure 
is dictatorial. 

This result, which is reminescent of Arrow’s general possibility theorem 
for social welfare functions [l], suggests a second question. What is the 
relationship between the requirement for voting procedures of strategy- 
proofness and Arrow’s requirements [I] for social welfare functions of 
rationality, nonnegative response, citizens’ sovereignty, and independence 
of irrelevant alternatives? I show that they are equivalent: a one-to-one 
correspondence exists between every strategy-proof voting procedure and 
every social welfare function satisfying Arrow’s four requirements. This 
means that if a social welfare function violates any one of Arrow’s require- 
ments, then the voting procedure which is naturally derived from the social 
welfare function is not strategy-proof. Last, for the third result of the 
paper,Iuse the first two results to construct a new proof of Arrow’s general 
possibility theorem. 

The questions of this paper are not new. Black [2, p. 1821 quotes the 
vexed retort, “My scheme is only intended for honest men!“, which 
Jean-Charles de Borda, the eighteenth century voting theorist, made 
when a colleague pointed out how easily his Borda count can be mani- 
pulated by sophisticated strategies. More recently Arrow [ 1, p. 71 suggested 
that strategy-proofness is an appropriate criterion for evaluating voting 
procedures. Dummet andFarquharson [3]conjectured in passing thatfor the 
case of three or more alternatives no nondictatorial strategy-proof voting 
procedure exists. By means of distinctly different techniques Gibbard [7]and 
Satterthwaite [ 131 independently formalized and proved this conjecture.2 
In addition Zeckhauser [19] proved a similar existence theorem. Vickery 
[IS] and Gibbard [7] speculated about, but did not definitively establish 
the relationship between strategy-proofness and Arrow’s four require- 
ments. Finally, Farquharson [4], Sen [16, pp. 193-1941, andpattanik [9-l 11 
each commented on different aspects of the manipulability of non- 
dictatorial voting procedures. 

This paper has six sections. In Section 2 I formulate the problem and 

z In my doctoral dissertation [13] I stated Theorem 1 (existence of a strategy proof 
voting procedure) and proved it using the constructive proof presented in Section 3 
of this paper. This work was done independently of Gibbard. Subsequently, an anonym- 
ous referee informed me of Gibbard’s paper. The statement and proof in Section 4 of 
Theorem 2 (correspondence of strategy proofness and Arrow’s conditions) followed 
directly from the insight which I gained from reading Gibbard’s paper. 
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establish notation. The next three sections contain in sequence the paper’s 
three results: strategy-proof voting procedures are necessarily dictatorial; 
a one-to-one correspondence exists between strategy-proof voting proce- 
dures and social welfare functions satisfying rationality, nonnegative 
response, citizens’ sovereignty, and independence of irrelevant alter- 
natives; and construction of a new proof of Arrow’s general possibility 
theorem using the first two results. In order to clarify the exposition of 
these three sections I have made within them the restrictive assumption 
that indifference is inadmissable. In Section 6 I eliminate this assumption 
and show how each of the results extend to the general case where indif- 
ference between alternatives is admissable. 

2. FORMULATION 

Let a committee be a set 1, of n, n 3 1, individuals whose task is to 
select a single alternative from an alternative set S, of m elements, m 2 3. 
Each individual i E I,, has preferences Ri which are a weak order on S,,, , 
i.e., Iii is reflexive, complete, and transitive.3 Thus, if X, y E S, and i E I, , 
then xRi y means that individual i either prefers that the committee choose 
alternative x instead of y or is indifferent concerning which of the two 
alternatives the committee chooses. Strict preference for x over y on the 
part of individual i is written as x&y. Thus, xKi y is equivalent to writing 
xRi y and -yRix. Indifference is written as XRi y and YRiX. Let rr,,, represent 
the collection of all possible preferences and let v,* represent the n-fold 
Cartesian product of rr, . 

The committee makes its selection of a single alternative by voting. 
Each individual i E Z, casts a ballot Bi which is a weak order on S, , i.e., 
BiE?rm. The ballots are counted by a voting procedure vnm. Formally, a 
voting procedure is a singlevalued mapping whose argument is the ballot 
set B = (B, ,..., B,J GUT,* and whose image is the committee’s choice, a 
single alternative x E S, . Every voting procedure vnm has a domain of 
rmn and a range of either S, or some nonempty subset of S, . Let the 
range be labeled T, where p, 1 < p < m, is the number of elements 
contained in T,, . Given these definitions, let the tetrad (I, , S, , vnnz, T,> 
be called the committee’s structure. 

This formulation of the committee decision problem incorporates two 
assumptions which particularly merit further comment. First, the 
committee makes only a single decision. This assumption excludes from 

8 The following symbols of mathematical logic are used: E element of, C subset of, 
g strict subset of, u union of two sets, n intersection of two sets, and - not. 
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consideration such committee behaviors as logrolling which may occur 
whenkver a committee is making a sequence of decisions. Second, the 
committee selects a single alternative from the alternative set. This 
contrasts with Arrow’s [l] and Sen’s [15-171 specification of set valued 
decision functions. They made that specification because their focus was 
social welfare where partitioning the alternative set into classes of equal 
welfare is a useful result. Nevertheless, specification of set valued decision 
functions (voting rules) is inappropriate here because committees often 
must choose among mutually exclusive courses of action.4 For example, a 
committee can adopt only one budget for a particular activity and fiscal 
period. 

With the basic structure of the committee specified, I can define the 
concept of a strategy-proof voting procedure. Consider a committee with 
structure <I, , S, , Pm, T,). Individual i E 1, can manipulate the voting 
procedure vnm at ballot set B = (Bl ,..., B,) ~7,” if and only if a ballot 
Bi’ E r, exists such that 

unm(B1 ,..., Bi’ ,..., B,) &Wm(B1 ,..., Bi ,..., B,). (1) 

Thus, vnln is manipulable at B if an individual i E 1, can substitute ballot 
Bit for Bi and secure a more favorable outcome by the standards of the 
original ballot Bi . The voting procedure u nm is strategy-proof if and only 
if no B E n,” exists at which it is manipulable.5 

This definition has two interpretations. If a voting procedure unrn is not 
strategy-proof, then a ballot set B = (Bl ,..., Bi ,..., B,) e7rmn and ballot 
B,’ E ~,,n exists such that vnm is manipulable at B. Suppose the ballot Bd 
faithfully represents the preferences of individual i in the specific sense that 
Bi E Ri . By substituting ballot Bi’ for Bi individual i can improve the 
outcome of the vote according to his own preferences, i.e., 

v”“(B, )...) Bit,..., B,) aivnm(B1 )..., Ri )...) B,). (2) 

The ballot Bi 3 Ri is the individual’s sincere strategy and the ballot 
Bi # Ri is a sophisticated strategy. 

4 Set valued decision functions can give unambiguous choices if they are coupled 
with a lottery mechanism that randomly selects one alternative from among any sets 
of tied alternatives. This is the approach which Fishburn [6] and Zeckhauser [19] 
adopted. I reject this approach here because I think that the use of decision mechanisms 
with a random element would be politically unacceptable to almost all committees. 
Gibbard [7] argued in detail in favor of this paper’s approach. 

5 I have adapted this definition of strategy-proofness from Schmeidler and 
Sonnenschein [14]. My earlier definition in [13] is equivalent, but more awkward to 
use in proofs. 
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The second interpretation relates to the theory of games. If a voting 
procedure v nm is strategy-proof, then no situation can arise where an 
individual i E I, can improve the vote’s outcome relative to his preferences 
Ri by employing a sophisticated strategy. Consequently, if vRnz is strategy- 
proof, then every set of sincere strategies R = (R, ,..., R,,) E iriT,‘” is an 
equilibrium as defined by Nash [8]. If the voting procedure is not strategy- 
proof, then there must exist a set of sincere strategies R = (R, ,..., R,) E r,,” 
which is not a Nash equilibrium. 

Until this point I have defined the preferences and ballots of committee 
members to be weak orders over the alternative set. For the purpose of 
proof this is an inconvenient convention. Therefore, throughout a majority 
of this paper, I recognize as admissable preferences and ballots only strong 
orders. Let pm and pmn, respectively, label the set of strong orders over S, 
and the n-fold Cartesian product of pm . Since strong orders exclude the 
possibility of indifference, if x, y E S, , x # y, and Ri E pm , then xRi y 
implies x&y and -yRix. Similarly, if x, y E S, , x # y, and Bi E pm , then 
x&y implies x&y and -yB,x. Formally: 

RESTRICTION D. Consider a committee with structure (I,, , S, , vnm, T,>. 
If this structure is subject to restriction D, then only preference sets 
R = (R, ,..., R,) E pmn and ballot sets B = (B, ,..., B,) E pm” are 
admissible. 

A committee subject to Restriction D is called a strict committee and its 
voting procedure is called a strict voting procedure. For strict committees 
the definitions given above must be revised with the substitution of pmn 
for rrmn. Thus, a strict voting procedure vnm has a domain of pn” and is 
strategy-proof if and only if there exists no BE pm” at which it is mani- 
pulable. 

My notational conventions for this paper are that the letters B, C, and D 
represent ballot sets or, if subscripted, individual ballots. The letters U, 
V, and W represent subsets of S, or T3 . The letters i and j index the 
individuals who are committee members and the letters w, X, y, and z 
represent elements of S, . Script upper case letters represent collections 
of voting procedures or social welfare functions. Finally, Y and 0 represent 
two functions which appear throughout the remainder of the paper. 

The choice function YW , defined for any WC S, , is a mapping from 
7r, into the nonempty subsets of S, . It has the property that x E Y,(B,) 
for some Bi E r,,, if and only if x E W and xBi y for all y E W. In other 
words, YW picks out those elements of W which the weak ordering Bt 
ranks highest. Turning to the function 0, , let W be a subset of S, that has 
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q < m elements. Define 8, to be a mapping from nr, to rQ with the property 
that if x,y~ W,Cierrn,Di~nm, and Ci = 6&D& then XCiy if and 
only if xDay. Thus, f& constructs a new weak ordering Ci from Di by 
simply deleting those elements of S, that are not contained in W. 

3. EXISTENCE THEOREM FOR VOTING PROCEDURES 

In this section I prove that if a strict voting procedure includes at least 
three elements in its range and is strategy-proof, then it is dictatorial. A 
dictatorial voting procedure, as its name implies, vests all power in one 
individual, the dictator, who determines the committee’s choice by his 
choice of that element of the voting procedure’s range which he ranks 
highest on his ballot. Formally, consider a voting procedure unrn with 
range T, . Define for all B E n,” and for some i E I, the functionfri(B) so 
that it is singlevalued, has range T, , and iffri(B) = x then xBi y for all 
y E T, . The voting procedure vnm is dictatorial if and only if an i E I,, 
exists such that Pm(B) =fTi(B) for all B E Tag. Notice that fTi(B) is 
identical to the choice function Y’=(BJ except thatf#(B) has a tie-breaking 
property which the set valued !Pr(Bi) does not have. 

Since I define dictatorial voting procedures with reference to its range 
T, , not with reference to the alternative set S, , two varieties of dictatorial 
voting procedures are possible. First, fully dictatorial voting procedures 
have as their ranges the full alternative set: T, = S, . Second, partially 
dictatoriaz voting procedures have as their ranges proper subsets of the full 
alternative set: T, C S, . In other words, if the voting procedure is 
partially dictatorial, then imposed on the dictator’s power is the constraint 
that he can not pick any x E S, such that x $ T, . 

The dictator of a dictatorial voting procedure never has any reason to 
misrepresent his preferences because the committee’s choice is always that 
element of the range which the dictator ranks first on his ballot. The same 
is not necessarily true for other individuals. If at the top of his ballot the 
dictator states that he is indifferent among a group of several alternatives, 
then the dictatorial voting procedure may resolve the tie by consulting 
the ballots of the other individuals. If, for example, the Borda count is the 
method used to count the other individuals’ ballots, then the manipula- 
bility of the Borda count when the choice is among at least three alter- 
natives may give these individuals an opportunity to manipulate the 
outcome. Thus, when indifference among alternatives is admissable, 
dictatoriality is a necessary but not a sufficient condition for strategy- 
proofness. It is necessary and sufficient when indifference is not admis- 
sable. 
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Theorem 1 is the existence theorem for strict strategy-proof voting 
procedures. In Section 6 I extend it to the case of non-strict committees. 

THEOREM 1. (Gibbard-Satterthwaite). Consider a strict committee 
with structure (I,, , S, , vnm, T, > where n 2 1 and m >p 3 3. The voting 
procedure vnm is strategy-proof if and only if it is dictatorial. 

This is formally a possibility theorem, but its substance is that of an 
impossibility theorem because no committee with democratic ideals will 
use a dictatorial voting procedure, Such a voting procedure vests all power 
in one individual, an unacceptable distribution. 

The theorem limits itself to the interesting case where the voting pro- 
cedure’s range includes at least three alternatives. If its range contains less 
than three elements, then a trivial result is that two more types of strategy 
proof voting procedures exist: imposed procedures and twin alternative 
voting procedures.6 These two types are of little interest because 
committees usually must select among three or more alternatives. 

An imposed voting procedure is one where no individual’s ballot has any 
influence on the decision. Thus, a voting procedure is imposed if there 
exists a x ES, such that Pm(B) = x for all BE 7~~“. Imposed voting 
procedures are strategy-proof because no individual’s choice of strategy- 
affects the committee’s choice.’ Twin alternative voting procedures have 
ranges that are limited to only two elements of the alternative set. Formally, 
if a set T, = (x, y) C S, , x # y, exists such that v”“(B) E T2 for all 
B E nmn, then vnm is a twin alternative voting procedure. An example of a 
strategy-proof twin alternative voting procedure for a committee con- 
sidering the alternative set S, = (w, x, y, z) is defined by the rule: select 
alternative x or z depending on which is ranked higher on a majority of 
the committee members’ ballots. Alternatives w  and y are excluded no 
matter how the committee votes. This twin alternative voting procedure is 
strategy proof because each individual has only two choices: vote for or 
against his preferred alternative. Obviously, in this case, he has every 
reason to vote for his preferred alternative no matter what his subjective 

g Another class of strategy proof committee decision rules exist, but they do not 
satisfy our definition of a voting procedure because they involve a lottery. Let a lottery 
be held among the committee members’ baIlots with each ballot having an equal op- 
portunity of winning. The top ranked alternative on the winning ballot is then declared 
the committee’s choice. This rule is strategy-proof, but its probabilistic nature would 
undoubtedly offend most committees. For a full discussion of lotteries as strategy-proof 
social choice mechanisms see Zeckhauser [19]. 

’ One may argue here that individuals have no incentive to play any strategy at all, 
whether sophisticated or sincere. Yet an imposed voting procedure is strategy-proof 
according to the definitions established above. 
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estimate of how the other individuals will vote is. Nevertheless, a twin 
alternative voting procedure is not necessarily strategy-proof because 
conceivably it might perversely count a vote for one included alternative 
as a vote for the other included alternative. 

The proof presented here of Theorem 1 is by construction. I first show 
that the theorem is true for the case where n = 1 and m = 3. Next I prove 
that, where m = 3, if the theorem is true for any n = n’, then it is true for 
I? = n’ + 1. This sets up an inductive chain and therefore, in the m = 3 
case, the theorem is true for all 12 2 1. Finally, given any arbitrary it 2 1, 
an inductive chain on m can be set up to establish the theorem’s validity 
for m > 3. This proof is direct and is not based on Arrow’s impossibility 
theorem. In both these respects it is different from Gibbard’s proof [7] of 
this same theorem. 

A necessary preliminary before beginning the proof’s substance is to 
define weak and strong alternative-excluding voting procedures. A strict 
voting procedure vnm is weak alternative-excluding if and only if there 
exists at least one alternative x E S, such that vn”(B) # x for all B E pm”. 
Thus, vnm is weak alternative-excluding if and only if T, C S, , i.e., its 
range must be strictly contained in S, . 

The definition of strong alternative-excluding voting procedures depends 
on Condition U, a Pareto optimality condition. 

CONDITION U. Consider a strict committee (I,, S, , vnm, T = TD>. 
The strict voting procedure v nm satis$es Condition U if and only if, for 
every B = (B, ,..., B,) E pm” such that Y,(B,) = Y=(B,) *e* Y,(B,), 
v”“(B) = YT(B,). 

Less formally, if vnm satisfies Condition U and if the ballots unanimously 
rank x E T, higher than every other y E T, , then v*~ will select x as the 
committee’s choice. Given this, a strict voting procedure vnm is a strong 
alternative-excluding voting procedure if and only if it is weak alternative- 
excluding and also satisfies Condition U. 

Condition U is helpful in the proofs that follow because every strict 
strategy-proof voting procedure must satisfy it. Lemma 1 establishes this 
assertion. 

LEMMA 1. Consider a strict committee (Z, , S, , vnm, T = T,) where 
n>l,m>3,andp>l. Ifvnna is strategy-proof, then it satisfies Condition U. 

Proof. Suppose v nm is strategy-proof and does not satisfy Condition U. 
Consequently, for some x E T, there exists a ballot set C E pmn such that 
lu,(C,) = Y,(C,) = ... = u’,(C,) and v”“(C) = x # Yr(C,). Since 
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YdCdET,,aDEp, n exists such that Pm(D) = YT(CI). Consider the 
sequence of ballot sets and outcomes: 

zF(C~ ) c, )...) Cn) = x f Y,(C,>, 

~“~(4, G ,..., G), 

(3) 

v”“(& ,..., R-1 > CA 
vnm(D1 ,..., Dn-, , Dn) = Yu,(C,). 

For later reference label such a sequence S(C, 0). At some point in this 
sequence of 12 + 1 elements the outcome must switch from &PT(CI) to 
Ur,(C,). Therefore, an i E I, must exist such that 

and 
I?" D ( 1 p---s Di-1 3 Di 3 Ci+l 9*--y Cd = ul,(Cd (5) 

where y E T, and y # Y=(C,). Let individual i have preferences Rs G C, . 
This means that Y,(C,) is that alternative contained within T, which 
individual i most prefers. Consequently, his best strategy is the sophistica- 
ted strategy Di rather than his sincere strategy C, , i.e. vnm is manipulable 
at (Dl ,..., Di-1, Ci 3 Ci+l y**-, C,). Therefore, if vnnz fails to satisfy Condi- 
tion U, then it is not strategy-proof. 1 

The next three lemmas prove that if a strict voting procedure vnJ 
defined for a three element alternative set is strategy-proof and has a 
range T, , 1 < p < 3, then it must be either fully dictatorial or strong 
alternative-excluding. The main task of these lemmas is to show that if 
vnp3 is strategy-proof and T9 = S, , then vns3 is fully dictatorial. The result 
that if vns3 is strategy proof and T, C S3 , then vns3 is strong alternative- 
excluding is secondary because it can be derived immediately. By definition 
T, C S, implies that v”*~ is weak alternative-excluding. Since vns3 is both 
strategy-proof and weak alternative-excluding, Lemma 1 implies that vns3 
is necessarily strong alternative-excluding. 

The method of proof which the three lemmas together employ is 
mathematical induction over n, the number of individuals who are com- 
mittee members. Lemma 2 begins the inductive chain by proving the 
result for committees with a single member. 
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LEMMA 2. Consider a strict committee (II, S, , 9, T = T,> where 
1 < p < 3. If v1s3 is strategy-proof, then it is either fully dictatorial or strong 
alternative-excluding. 

Proof. Suppose the lemma is false. Therefore, a v1s3 exists that is 
strategy-proof and neither fully dictatorial nor strong alternative- 
excluding. Then one of the following must be true: (a) vlJ satisfies Con- 
dition U and is not weak alternative-excluding, (b) v1s3 satisfies Condition 
U and is weak alternative-excluding, or (c) v1s3 does not satisfy Condition 
U. But Case (a) cannot be true since if T, = S, and if v1s3 satisfies Condition 
U, then v1*3 must be fully dictatorial. This conclusion follows directly 
because for a single member committee Condition U is equivalent to a 
dictatoriality requirement. Case (b) cannot be true because any weak 
alternative-excluding voting procedure that satisfies Condition U is 
strong alternative-excluding. Case (c) also cannot be true because Lemma 1 
states that every strategy-proof strict voting procedure satisfies 
Condition U. 1 

Statement and proof of Lemma 3 depends on the fact that we can write 
any strict voting procedure v”p3 as an n-dimensional table. For example, 
let (x y z) represent the ballot Bi with the properties that x Bi y, x &z, and 
y B+z where x, y, z E S, . Tables I and II are then equivalent representations 
of an arbitrary, asymmetric strict voting procedure v2s3. Specifically, if 
individuals one and two respectively cast ballots (x z y) and (y z x), then 
the committee’s choice is z. 

LEMMA 3. Consider a strict committee (1,,+1 , S, , vn+le3, T,> where 
n > 1 and 1 <p < 3. Let B = (B1 ,..., B,). The strict voting procedure 
vn+ls3 may be written as 

if B,,, = (x y z) 

v”+‘*~(B, B,+J = if B,+l = (x z y) (6) 

if B,+l = (z y x) 

where v!.~,..., Q3 are strict voting procedures for committees with n 
members. No ballot set (B, B,,J E rr;‘l exists at which any’ individual i, 
where i E I, (individual n + 1 is excluded), can manipulate v”+ls3 tf and 
only if each of the six voting procedures vln,..., vgn are strategy-proof. 

Despite the if and only if phrasing, this lemma states that a necessary but 
not sufficient condition for constrcting a strategy-proof voting procedure 
v”+ls3 is that it be constructed out of a set of strategy-proof voting proce- 
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TABLE I 

Bl 
(XY 4 (x ZY) (Y x 4 01 z xl (z XY) (ZY.4 

(XYZ) x x Y Y Y Y 

(x = Y) X x Y Y Y Y 
BZ (Y x 4 Y Y X X x X 

0, z 4 Y z X x x x 

(z x Y) Y Y X X X x 

(ZY-4 Y Y x x x x 

TABLE II 

v**~(BI , &I 

I u>“(B,) if B, = (x y  z) 

D$~(BJ if B, = (x z y) 

$,3(Bl) if B, = 0 x z) 
v~,~(B, , BJ = < 

v$~(BJ if B, = (y z x) 

v:*~(B,) if B, = (z x y) 

u:*~(BJ if B, = (z y  x) 

Where 

v;,3 e $3 $3 VI,3 
4 

V;,3 v”S 
6 

(XYZ) x x Y Y Y Y 
b z Y) X x Y z Y Y 

Bl 
ti x 2) Y Y X X X X 

0 = 4 Y Y X X X X 
(z x Y) Y Y x x X x 

(ZYX) Y Y x x x x 

dures Q3, k = l,..., 6. The condition is not sufficient because some sets of 
voting procedures vi*” exist such that individual n + 1 can manipulate the 
resulting voting procedure vn+ls3 in specific situations. 

Proof. Suppose the necessary part is false. Therefore, a vn+lb3 with 
its set of constituent vl*” must exist such that (a) ZP+~*~ is strategy proof 



198 MARK ALLEN SATTERTHWAITE 

for all individuals j E I, and (b) some v;*~, 1 < k < 6, is not strategy 
proof for some individual i E I, . Without loss of generality suppose that 
I$*” is not strategy proof for individual i. Consequently there exists a ballot 
set B = (Bl ,..., Bi ,..., B,) E psn and ballot Bi’ such that 

v;‘~(B, ,..., Bi’ ,..., B,) &$*3(B, ,..., Bi ,..., B,), (7) 

i.e., individual i can manipulate vet” at B. 
Let individual n + 1 cast ballot B,+l = (x y z). Let B’ = (Bl ,..., 

Bil,..., B,). This implies, based on (6) that 

vn+ls3(B, B,,,) = vFs3(B) 

and 

c~+~,~(B’, B,,,) = z13”*~(B’). 

Substitution into (7) gives 

(8) 

(9) 

zP+~*~(B’, B,+J Bi v”+~*~(B, B,,,) (10) 

which shows that t~+l,~ is manipulable at (B, B,,,). This contradicts the 
assumption that the lemma’s necessary part is false. 

Suppose the sufficient part is false. Therefore a v”*ls3 with its set of 
constituent v;p3,..., Q3 must exist such that (a) v:‘~,..., @a3 are strategy 
proof for all individuals j E I, and (b) IY+~*~ is not strategy proof for some 
individual i E I, . This implies that a ballot set (B, B,+l) = (Bl ,..., Bi ,..,, 
4 3 Bn,,) E P:+’ and ballot B,’ exist such that 

v”+~*~(B’, B,,,) &v”+~*~(B, B,,,) (11) 

where (B’, B,,,) = (B, ,..., Bi’y..., B, , B,+l). Assume without loss of 
generality that Bnfl = (X y z). Equations (8) and (9) hold and therefore 
vF*” may be substituted for zP+~*~ : 

v;*~(B’) &vns3(B). (12) 

Thus, 01”‘~ is not strategy-proof, a contradiction of the assumption that the 
sufficient part is false. [ 

Lemma 4 starts with the assumption that every strategy-proof strict 
voting procedure v”s3 is either fully dictatorial or strong alternative- 
excluding. Then, with Lemma 3 as justification, it uses Eq. (6) and those 
voting procedures that we assume to be strategy-proof to construct every 
strategy-proof strict voting procedure ~+l*~. The complication in this 
procedure is that a voting procedure v n+1*3 is not necessarily strategy-proof 
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if it is constructed out of strategy-proof voting procedures Pan. Depending 
on precisely how vn+ls3 is constructed individual n + 1 may find that in 
specific situations he can manipulate @+ls3. 

LEMMA 4. Consider a strict committee <Ia+l, S, , vn+lv3, T,> where 
n 3 1 and 1 < p < 3. If every strategy-proof strict voting procedure vne3 is 
either fully dictatorial or strong alternative-excluding, then a necessary 
condition for n+1*3 v to be strategy-proof is that it be either fully dictatorial 
or strong alternative-excluding. 

Proof. Let Y-m+1 be the collection of all strict voting procedures vn+ls3 
for committees with n + 1 members. Let ?P+l C Vn+l be the collection 
of all strict voting procedures v n+1,3 E -tm+l that are fully dictatorial or 
strong alternative-excluding. Let Vn and S” be the collections of strict 
voting procedures for committees with n members that correspond to 
Vn+l and 5P+l respectively. Let W n+l C -Im+l be the collection of all strict 
voting procedures ZJ”+~*~ E Vn+l that are constructed from voting proce- 
dures I.P.~ E ZP, i.e., v”*-~*~ E Wn+l if and only if ZP+~*~ can be written as 

vyS3(B) if B,+l = (x y z) 

vn+lB3(B, B,+3 = v;‘~(B) if B,+l = (x z y) (13) 
. . . 

vtS3(B) if B,+l = (z y x) 

where B = (Bl ,..., Bn) E pm” and vFP3 ,..., v:*~ E 2P. Finally let P* and 
Y”,+l* be the collections of all strategy-proof strict voting procedures 
contained, respectively in the sets Vn and Vn+l. 

Assume that Vcn* C 5?“^“. Lemma 3 therefore implies V+l* C W”+l. 
Consequently, every v n+1*3 E Vn+l* can be identified by repeatedly 
partitioning Yfn+l and discarding at every step those subsets which are 
disjoint with Vn+l*. This partitioning of Wn+l depends on the fact that 
Xn contains seven classes of fully dictatorial and strong alternative- 
excluding voting procedures: 

v”*~(B) = f&B) where T = S, and i E I,, (14) 

vns3(B) = h2’(B) = x, (15) 

v”*“(B) = h;3(B) = y, (16) 

vnS3(B) = h%3(B) = z, 

v”‘~(B) = h$3(B), 

(17) 

(18) 
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?P3(B) = hym3(B), and (19) 

P3(B) = @3(B), (20) 

where the notation h>3 represents a strong alternative-excluding voting 
procedure with range U and where B E pmn, S, = (x, y, z), K = (x), 
L = (y). M = (z), iV = ( y, z), P = (x, z), and Q = (x, y). Type (14) 
clearly represents every possible fully dictatorial voting procedure for a 
committee with it members. Types (15) through (20) exhaustively represent 
every possible strong alternative-excluding voting procedure because 
(K, L, M, N, P, Q) is the collection of all possible, proper, non-empty 
subsets of S, = (x, y, z). 

The set Wn+l can be partitioned into seven subsets: 

n+1 _ w1 - (y”fl.3 

where 

n+1 _ -tlr, - (vnfl.3 

n+1 
w3 

= {p+l*3 1 

. . . 
2 

V n+1*3 E Wnfl & vn+ls3[B, (x y z)] = f+(B) 

r = S, and i E I,}, (21) 

V n+1.3 E $/-n+1 & vn+l*3 P, (x Y 41 = h”K’“UOL (22) 

V 
n+1,3 E @-T&+1 & #+1.3 [B, (x y z)] = h;“(B)}, (23) 

W, n+1 = {vn+lB3 j vn+lz3 E W’-“+’ & vn+le3[B, (x y z)] = h”d3(B)). (24) 

Each of these seven subsets can itself be partitioned into seven subsets: 
ypil 11 ,*a*, p+1, $&-a+1 $v-n+1 31 ,.‘., 7, * 

Most of these subsets are easily proved to be disjoint with Vn+l*. For 
example, consider 

fl;’ = {v“+‘~~ 1 vn+lB3 E W-i+’ & un+ls3[B, (x z y)] = h;‘(B)}. 

Let individual it + 1 have preferences and sincere strategy Rnfl = (x z y) 
and let the other n individuals cast identical ballots Bl = B, = --* = B, = 
(z y x). The definitions of Wc$l, Iz;;.~, and Condition U imply that 
@+l-O[B, (x z y)] = @(B) = y. This is the least preferable outcome for 
individual n + 1. He can improve the outcome relative to his own pre- 
ferences by employing the sophisticated strategy BX,, = (x y z) because 
vn+lq3[B, (x y z)] = h:+‘*‘(B) = x. Therefore every vn+ls3 E W$l is not 
strategy-proof. i.e., Wttl n Vn+l* = 0. 

This procedure of elimination and partition may be continued through 
six levels until 17 subsets of W n+l are identied that are not disjoint with 
Yn+l*, i.e., these 17 subsets contain ?P+l*. For example, one of these 
subsets W&& contains a strategy-proof voting procedure of type /z:+‘*~. 
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Inspection of these 17 subsets reveals that each one contains only strong 
alternative-excluding or fully dictatorial voting procedures. The specifics 
of this procedure are found in Satterthwaite [13]. Therefore Vn+l* = 
(Y-*+1* n ?v”+l) c Xa+l. 1 

Lemma 4 establishes an inductive chain on n whose initial assumption 
is validated by Lemma 2. Consequently Lemmas 2 and 4 together prove 
that if a strict voting procedure nns3 is strategy-proof, then it is either fully 
dictatorial or strong alternative-excluding. An inductive chain may also 
be established on m to generalize the results to any number of alternatives 
equal to or greater than three. I do not include the specifics of this step 
here because of their length; they may also be found in [13]. Lemma 5 
summarizes this result. 

LEMMA 5. Consider a strict committee (I,, , S, , vnna, TJ where 
n 3 1, m >, 3 and p > 1. If vnm is strategy-proof, then it is either fully 
dictatorial or strong alternative-excluding. 

Two more steps are required to prove Theorem 1. Lemma 6 states that 
every strategy-proof strong alternative-excluding voting procedure must 
satisfy what is essentially an “independence of irrelevant alternatives” 
condition. The final step uses Lemma 6 to prove that every strategy-proof 
strong alternative-excluding voting procedure with a range of at least 
three alternatives must be partially dictatorial. 

LEMMA 6. Consider a strict committee (I, , S, , vnm, T = T,> where 
nb2,m>3,p>1,andm>p. Ifvnm is strategy-proof and two ballot 
sets C, D E pnLn have the property that, for all i E I, , 8r(C,) = 0,(D,), then 
v”“(C) = zF(D). 

The condition that O,(C,) = b,(D,) f or all i E I,, means that each pair of 
ballots-Ci and Di---must have identical ordinal rankings of the elements 
contained within T, . 

Proof If T = S,, then the lemma is trivial because the condition 
placed on C and D implies that C must be identical to D. If T C S, , 
assume that vnln is strategy-proof and, as a consequence of Lemma 1, 
strong alternative-excluding. Now suppose that this lemma is false. This 
means that a pair of ballot sets C, D G pmn exist such that (a) v”“(C) # 
v”“(D) and (b), for all i E I, , &.(C,) = O,(D,). Examine the sequence of 
ballot sets S(C, D).8 An i E I, and distinct x, y E T must exist such that 

PyCl )...) Ci-1, Di, Di+l )*..) 0,) = X 

8 The sequence S(C, 0) is defined in lemma one’s proof. 

(25) 
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and 

Since we are considering strict committees indifference is ruled out. 
Therefore, because O,(Ci) = &(D,), two cases are possible: either (a) xCi y 
and XDi y or (b) YCiX and yBix. If the former is true, then individual i can 
use Di to manipulate vnm at (C, ,..., Ci-1 , Ci , Di+l ,..., D,). If the latter 
is true, individual i can use Ci to manipulate vnm at (C, ,..., Ci_l, Di , 
Di+l ,..., D,). Therefore, contrary to assumption, vnm cannot be strategy- 
proof. 1 

This puts me in position to complete the proof of Theorem 1. It states 
that every strict voting procedure vnrn with a range of at least three elements 
is strategy-proof if and only if it is dictatorial. The if part is true by inspec- 
tion. The only if part yields as follows. Lemma 5 states that if v”* is 
strategy-proof, then it is either fully dictatorial or strong alternative- 
excluding Consequently, I need to show that if vnna is strategy-proof and 
strong alternative-excluding then it is partially dictatorial. Assume that 
v”” is strategy-proof, strong alternative-excluding and has a range T = T, , 
m>p23. 

For all i E I, rewrite each ballot Bi E pm” as Bi* E pp” where Bi* is a 
strong ordering, defined over T, , with the property that Bi* = e,(Bi). 
Each Bi* is identical to Bi except that the m - p alternatives that are not 
included within the range of vnm are deleted. Consider any C E pm” and 
D E pm”, C # D, such that 

F4-(CA..., f%(cJl = M~J,..., MaJl. (27) 

Lemma 6 implies that v”“(C) = v”“(D). Consequently a strict voting 
procedure vnp for p alternatives exists such that, for all B E pnLn, 

v”“Fw,),..., O,(B,)] = zF(Bl ,..., B,). (28) 

Since vnna is strategy-proof, v fifl is also strategy-proof and, by Lemma 5, is 
either dictatorial or strong alternative-excluding. It cannot be strong 
alternative-excluding because its range includes all p elements of TP . 
Therefore it is dictatorial: an i E I,, exists that for all B E pnLn 

v”“m-u%),..., b@nN = .fwMBI),..., ww 

Substituting vnm for vnp gives 

vnm(B1 ,..., &a) = friFM&),..-, 4-@A 
=h-V4 ,..., &A 

i.e., vQm is partially dictatorial. 

(29) 

(30) 

(31) 
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4. THE CORRESPONDENCE THEOREM 

In this section I show that the strategy-proofness condition for 
voting procedures corresponds precisely to Arrow’s rationality, non- 
negative response, citizens’ sovereignty, and independence of irrelevant 
alternatives conditions for social welfare functions. Briefly the section’s 
substance is as follows. Initially I restate Arrow’s definitions of social 
welfare functions, rationality, nonnegative response (NNR), citizens’ 
sovereignty (CS), and independence of irrelevant alternatives (HA) and 
observe that every social welfare function is rational. Additionally I define 
strict social welfare functions as the analogue of strict voting procedures. 
Next I prove that a procedure exists for constructing a strict strategy-proof 
voting procedure from every strict social welfare function satisfying 
NNR, CS, and IIA. I then show that a procedure exists for constructing 
a strict social welfare function satisfying NNR, CS, and IIA from every 
strict strategy-proof voting procedure. This last result is based on an 
intermediate result which Gibbard [7] obtained in his proof of Theorem 1. 
Together these results imply the correspondence theorem: a one-to-one 
correspondence between strict strategy-proof voting procedures and strict 
social welfare functions satisfying NNR, CS, and IIA can be constructed. 
Section 6 contains the theorem’s generalization to non-strict voting 
procedures and social welfare functions. 

Arrow [l] defines a social welfare function for a committee with n mem- 
bers considering m alternatives to be a singlevalued mapping u”~ whose 
domain is nmn and whose range is rrrn or some nonempty subset of rm . 
Thus u%“(B) = A where B = (B, ,..., B,) E nrnR and A ET,. The weak 
order A is called the social ordering. A social welfare function is identical 
to a voting procedure except that its image is a weak order on S, instead 
of a single element of S, . Given a ballot set B and a subset T C S, , 
Arrow defines the social choice over the set T to be Y&““(B)], i.e., the 
social choice is that element of T which the social ordering ranks highest. 
Finally, let a committee that is using a social welfare function IP be 
described by the triplet (1, , S,,, , ZP~), 

Arrow’s choice of definitions for social welfare function and social 
choice guarantees that every social welfare function satisfies the condition 
of rationality. Let vu(B) be a social choice function: for every B E rmn and 
UC S, , the function’s image is a subset of U. The function q is rational 
if for each B E rrm” there exists a weak order A E rTT, such that, for all 
UC S, , q”(B) = Y&4). Th us, trivially, every social welfare function 
unm gives rise to rational social choices Y&““(B) = A]. 

In addition to the implicit requirement of rationality, Arrow posits four 
conditions which, he argues, any ideal social welfare function should satisfy. 
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Nondictatorship (ND). Let A = u”“(B). No i E I, exists such that, for 
all x, y E S, and for all B E rTmn, x&y implies x;iv. 

Independence of Irrelevant Alternatives @IA). Let A, = u”“(C) and 
A, = ~“~(0). If for all i E I, , for some WC S, , for some C E mmn, and 
for some D E Vet, &(C,), = e&D,), then Y&A.) = Y&A.). 

Citizens’ Sovereignty (CS). Let A = u”“(B). For every x, y E S,,, there 
exists a ballot set B E n,” such that xAy. 

Nonnegative Response (NNR). For some x E S, let W = S, - (x) and 
let C, D ET,” be any two ballot sets which have the properties that (a) 
for all i E I, , B,(CJ = 6&D,), (b) for all i E 1, and all y E W, xD,y if 
xCiy, and (c) for all i E I,, and all y E W, xDiy if xciy. Let u”“(C) = A, 
and u”“(D) = A, . If, for any z E W, x&z, then xA,z. 

In less formal language Condition NNR requires that if the only change in 
ballot set D is that on some individual ballots within ballot set D alter- 
native x has been moved up relative to some other alternatives, then within 
the committee’s final social ordering Al, alternative x cannot have moved 
down in relation to its position within the original social ordering A, . 

The reasonableness of the ND, CS, and NNR conditions is obvious. 
Fishburn [5] and Plott [12] contain excellent discussion of the reasonable- 
ness of rationality and IIA. Conditions CS, NNR, and IIA, as Arrow 
[l, pp. 971 has noted, imply the condition of Pareto optimality. 

Pareto Optimality (PO). Let A = zF(B). If any B ETT,~ has the 
property that &y for all i E 1, and some x, y E S, , then xjTy. 

Observe that if a social welfare function satisfiesP0, then it also satisfies CS. 
I define a strict social we&e function analogously to a strict voting 

procedure. The domain of a strict social welfare function u”” is limited to 
elements of pm”, i.e., only B E pnzn are admissable as ballot sets. Similarly, 
the range of a strict social welfare function is limited; it may be either pm 
or any of its nonempty subsets. 

With these preliminaries complete, I can describe the procedure by 
which a strategy-proof voting procedure can be constructed from any social 
welfare function satisfying CS, NNR, and IIA. Let umrn be a social welfare 
function with the property that, for all B E rrmn, the image of YJu”~(B)] 
is always a single element of S, . Construct the voting procedure unln by 
defining, for all B E TV”, uflnz(B) = ?Ps[unm(B)]. Call any vnm so constructed 
the voting procedure derived from ~4”“. Clearly the vnna derived from a unm 
is unique. Lemma 7 states that a sufficient condition for a vnm which is 
derived from a strict unm to be strategy-proof is that ~nm satisfy CS, NNR, 
and IIA. 
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LEMMA 7. Consider a strict committee (I,, S, , unm) where n > 2 and 
m > 3. If the strict social welfare function satisjies CS, NNR, and IIA, 
then the strict voting procedure vnn derived,from unm is strategy-proof and 
has range T, = S,,, . 

Proof. Since unm satisfies CS, NNR, and IIA, it also satisfies PO. 
Observe that if u”” satisfies PO, then the derived vnn has a range identical 
to S, because unm has domain pm” and v”“(B) = Y/,[u”“(B)] for all 
B E pma. This leaves the question of the strategy-proofness of v’l”. 

Suppose a strict unm satisfies CS, NNR, and IIA, and that its derived 
vnm is not strategy-proof. Since v a?n is not strategy-proof a ballot set 
(4 ,..., Bi 2..., Bn) E pm” exists at which ~7~~ is manipulable: 

v”~(B~ )s..y Bit,..., B,) &vnm(B1 )...) Bi y..-) B,) (32) 

where Bi’ E pm . Let vnm(B1 ,..., Bi’ ,..., B,) = x, vnm(B1 ,..., Bi ,..., B,) = y, 
u~~(B, ,..., B,‘,..., B,) = A’, and zF(B1 ,..., Bi ,..., B,) = A where A, 
A’ E pm. Note that by definition Y&t’) = x and Ys(A) = y. 
Consequently, (32) may be rewritten as Y&l’) &Y/,(A) or as xB, y. 
Focusing now on Bi’, two possibilities exist: yBi’x or x&‘y. 

Consider the first case where YBi’x. Let U = S, - (x). Construct a new 
ballot Bi* = [x O,(B,‘)], i.e., xB,*z for all z E iJ and, for all w, z E U, 
wB,*z if and only if w&‘z. Thus, on the ballot Bi* alternative x is top- 
ranked and the relative positions of other alternatives is unchanged. This 
is the type of shift that condition NNR describes. Let unm(B1 ,..., Bi*,..., 
B,) = A*. Nonnegative response (NNR) then implies that xA*z for all 
z E U. This is because YJA’) = x; consequently, Ys(A*) = x also. Let 
X = (x, y). Notice Bi* is constructed SO that 8,(Bi*) = B,(Bi), i.e., both 
xB,*y and x&y. If we apply IIA, the implication is that Yx(A*) = Y,(A). 
This, however, contradicts the assumption that Yx(A*) = Y,(A*) = x 
and Yx(A) = Y/,(A) = y. Therefore, if YBi’X, then vnnL must be strategy- 
proof. 

Consider the second case where x&‘y. Observe that O,(BJ = O,(B,‘) 
where X = (x, y). Condition IIA implies that necessarily Y/,(A’) = ‘u,(A). 
This, however, contradicts the assumption that Yx(A) = Y/,(A) = y and 
Yx(A’) = Y&A’) = x. Therefore, if XBi’y, then vn* must be strategy- 
proof. 1 

Consistent with the definition of a derived voting procedure, I define 
unm to be the social welfare function that underlies the voting procedure 
vnm if and only if, for all B ET,“, Ys[unn(B)] = v%“(B) where S = S,,, . 
Clearly, many social welfare functions underlie every voting procedure 
vnm. My interest here, however, is to find for each strategy-proof voting 

642/10/z-6 
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procedure vnm an underlying social welfare function unm that satisfies 
CS, NNR, and IIA. Such a unna can be constructed for any strict strategy- 
proof vnm by following a procedure Gibbard [7] has devised. 

Pick an arbitrary strong order Q E pm . Define d,, , where x, y E S,,, and 
x # y, to be a function with domain and range pm . Let d,, have properties 
such that if Bi* = d,,(B,), then 

(a) xB,*y if x&y, y&*x if y&x, 

(b) X&*W and y&*w for all w  ES, - (x, y), and 

(c) w&*z if WQZ for all w, z ES, - (x, y). 

For each ballot set (B, ,..., B,) construct a binary relation P such that, for 
all x, y ES, and x f y, xpy if and only if x = vnm[dzu(Bl),..., d,,(B,)]. 
Since a P is defined for each ballot set (B, ,..., B,) E pm”, a function E.L can 
be defined that associates the appropriate P with each B E pm%, Gibbard 
[7], in his proof of this paper’s Theorem 1, showed that if a strict voting 
procedure vnm is strategy-proof, then the binary relation P associated 
with each B E pm* is a strong order, i.e. P E pm . This means that the 
function p is a strict social welfare function. Gibbard then went on to 
show that p has two properties in such cases: it underlies vnna and it 
satisfies PO and IIA.S It also satisfies CS because PO implies CS. 

Three facts are important to note concerning Gibbard’s result. First, it 
considers only strict voting procedures whose ranges T, are identical to 
the alternative set S, . Nevertheless, this restriction is not limiting because, 
as was shown in section three’s proof of Theorem 1, any strict strategy- 
proof vnna for which T, c S, , p > 3, can be rewritten as a strict strategy- 
proof voting procedure vnp defined over the reduced alternative set 
S, = TD . Gibbard’s result then applies to v”p: underlying it is a strict 
social welfare function unp which satisfies PO and IIA. 

The second fact to note is that Gibbard’s result does not establish the 
uniqueness of the unm that underlies each strict strategy-proof vnm. This, 
however, is easy to prove. Suppose that two strict social welfare functions 
TV and p’ both underlie v”~, both satisfy PO and IIA, and, for some 
CEP?nnZ,p (C) # p’(C). Observe that, for all B E pm*, u""(B) = Y&(B)] = 
Y&'(B)] because p and t.~’ are both assumed to underlie vnm. Therefore, 
an x, y E S, exist such that xjJy and yA’x where p(C) = A and p’(C) = A’. 
Let, for all i E 1, , Ci* = d,,(C). Also let A* = p(C*) and A’* = p’(C*). 
By IIA, xA*y and yA’*x. By PO, xA*z, yA*z, xA’*z, yA’*z for all 

* This particular result is the heart of Gibbard’s proof of this paper’s Theorem 1. 
His method is to first show that underlying every strategy-proof unm is a u- satisfying 
PO and IIA. Arrow’s general possibility theorem [l] then implies that unm is dictatorial. 
Finally, he proves that a dictatorial u”‘” underlying unm implies that u”” is dictatorial. 
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z e S, - (x, y). Therefore, Y&4*) = Y&(C*)] = x and Y&4’ *) = 
Y&‘(C*)] = y. Th is contradicts our original assumption that, for all 
BE pm”, U&(B)] = Ysb’(B)] = u”“(B). Consequently p = CL’, i.e., only 
one social welfare function satisfying PO and IIA underlies each strict 
strategy-proof voting procedure. 

Third, note that Gibbard’s result does not assert that the unrn under- 
lying a strategy-proof vnln satisfies NNR. Suppose unnz satisfies PO and 
IIA, but does not satisfy NNR. Consequently, x, y E T, , B = (B, ,..., 
B+ ,..., &I E pmn, and B,’ E pm exist such that y&x, &‘y, xjiu, and yA’x 
where A = unm(B1 ,..., Bi ,.-., B,), and A’ = unm(B1 ,..., Bt’ ,..., B,). Let, for all 
j E I, , Cj = d,,(BJ and Ci’ = d..(Bi’). Therefore, because uflnm satisfies 
IIA and PO, VJU~~(C, ,..., Ci ,..-, C,)] = x and Ys[unm(Cr ,..., Ci’ ,..., 
C,)] = y. Recall that, since u”“’ underlies unm, Ys[unm(B)] = v”“(B). 
Therefore, unm(C1 ,..., Ci ,..., C,) = x and zY~(C~ ,..., Ci’ ,..., C,) = y. 
Because yCix individual i can manipulate vnm at (C, ,..., Ci ,..., C,). 
Therefore, since v”” is not strategy-proof if unm violates NNR, @ln must 
necessariIy satisfy NNR. Lemma 8 summarizes these results. Lemmas 7 
and 8 together prove Theorem 2. 

LEMMA 8. Consider a strict committee (I, , S, , Pm, T,> where 
nZ2,rnt3,andT,~S~.Ifv~~ is strategy-proof, then there exists a 
unique, strict social welfare function unln which underlies v”” and satisjes 
CS, NNR, and IIA. 

THEOREM 2. Let n 3 2 and m 2 3. A one-to-one correspondence h 
exists between every strict strategy-proof voting procedure vnm with range 
T# = S, and every strict social werfare function unm satisfying CS, NNR, 
and IIA. If unm = h(v”m), then unm underlies vnnz and vnln is derived from 
unm. 

This theorem’s significance stems from the fact that the strategy-proofness 
condition corresponds to Arrow’s rationality, CS, NNR, and IIA condi- 
tions independently of the fact that each set of conditions by itself implies 
dictatoriality. Thus, construction of a social welfare function satisfying 
Arrow’s conditions is equivalent to constructing a strategy-proof voting 
procedure, 

Theorem 2 creates a strong new justification for Arrow’s choice of 
rationality, CS, NNR, and IIA as conditions which an ideal social welfare 
function should satisfy, The conditions of rationality and IIA which have 
caused so much controversy are now shown to be part and parcel of the 
very practical criterion of strategy-proofness. For instance, this theorem 
shows that rationality is more than an attractive intellectural criterion. If 
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a social welfare function violates rationality, then the voting procedure 
derived from it violates strategy-proofness. 

5. ARROW’S GENERAL POSSIBILITY THEOREM 

If a strict social welfare satisfies CS, NNR, and IIA, then Lemma 7 
states that the strict voting procedure derived from it is strategy-proof. 
According to Theorem 1 this derived voting procedure must be dictatorial. 
In this section I show that dictatoriality of the derived voting procedure 
implies dictatoriafity of the original social welfare function. This establishes 
for the case of strict social welfare functions a new proof of Arrow’s 
general possibility theorem [l]. In Section 6 I extend this proof to the 
general case of social welfare functions. 

THEOREM 3. (Arrow). Consider a strict committee (I,, , S, , unm) 
where n > 2 and m 3 3. The strict social welfare function unna satisfies CS, 
NNR, and IIA ifand only ifit is dictatorial. 

Proof. Suppose a strict unm exists which is not dictatorial, but which 
satisfies CS, NNR, and IIA. By Lemma 7, let vnm be the strategy-proof 
strict voting procedure derived from zPm. By the constructive proof of 
Theorem 2, vnm is dictatorial. Hence, for all BE pm”, !?‘s[unm(B)] = 
v%“(B) = fsi(B) for some i E I, and where S = S, . Recall, however, that 
unm is not dictatorial. This implies that a ballot set B E pm” exists such that, 
for some x, y E S, , x&y and yAx where u”“(B) = A. 

Rewrite ballot set B as B* where, for all .j E Z,, , Bj* = [tY,(BJ I~,(BJ], 
U = (x, y), and W = S, - (x, y), i.e. Bj* is identical to Bj except that 
alternatives x and y are moved to the top. Consequently fsi(B*) = x 
because x&y implies x&*y. Let A* = unm(B*). By IIA, yA*x. By PO, 
either Y&4*) = x or Y&4*) = y. The former is impossible because 
yd*x. Therefore, Y~[u”~(B*)] = u%,(B*) = y. This, however, contra- 
dicts the fact that individual i is a dictator for vnm because vmm(B*) = 
f,‘(B*) = x. Therefore unm cannot be nondictatorial. 1 

6. GENERALIZATIONS TO WEAK ORDERS 

In this final section I generalize Theorems 1, 2, and 3 by making indif- 
ference admissable on individuals’ ballots and preferences. The key step 
in my proofs of these generalization is to show that strategy-proof voting 
procedures and social welfare functions satisfying CS, NNR, and IIA 



STRATEGY-PROOFNESS AND ARROW’S CONDITIONS 209 

may be decomposed into a tie-breaking function and, respectively, a strict 
voting procedure or strict social welfare function. 

Define a tie-breaking function to be a single-valued function 01 with 
domain rrmn, range pmn, and property that if ar(B) = C for some B E vmn 
and C E pmn, then, for all x, y E S, , and all i E I, , x&y implies xCi y and 
y&x implies yCix. If, for some x, y E S, and some Bi ES-, , xBi y and 
yBjx then either xCiy or yC,x depending on the tie-breaking function’s 
structure. Every tie-breaking function cz decomposes into n component 
tie-breaking functions: a[B] = [CL,(B) ,..., ai ,..., CL,(B)] = [C, ,..., Ci ,..., 
C,]. A regular tie-breaking function y is a tie-breaking function for which 
a set of strong orders Q = (Q ,..., Qi ,..., Q,J E pmn exists such that if 
C = y(B) and, for some x, y E S, , xBi y and yBix, then XC, y if and only 
if x&y. Any regular tie-breaking function y decomposes into n indepen- 
dent component tie-breaking functions: y(B) = [y#l,),..., y@J,..., 
ynW1 = [G ,..., G ,..., C,]. Call the ordering Q, the tie-breaking order 
for the component function yi . 

Table III defines two illustrative component tie-breaking functions, 01~ 
and yi , which have as their arguments only the ballot Bi instead of the 
entire ballot set B. Let the notation Bi = (x w  y z) represent a ballot 

TABLE III 

Tie-breaking Functions 01 and y. 

4 G4) 

(x Y z> (x Y z) 
(x z Y) (x z Y) 
(Y x z) (Y x z) 
(Y z -4 (Y z 4 
(z x Y) 6 x Y) 
(z Y 4 (z Y xl 

(x myYz) (x Y z) 

(x = Y z) (Y x z> 

(x Y - z> (x z Y) 

(x - z Y) (2 x Y) 

(Y x w z) (Y x z) 

(Y - z 4 (Y z xl 

(2 x - Y) (z Y 4 

ri(&) 

(x Y z) 
(x z Y) 
(Y x z> 
(Y z -4 
(z x Y) 
(z Y x) 
(x Y z) 
(x Y z) 
(x Y z) 
(x z Y) 
0, x z) 
(Y z 4 
(z x Y) 

Key: Bi = (x y  z) means n&y, X&P, and y&z. 
Bi = (x y  = z) means x&y, x&z, yBiz, and zBiy. 
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Bi E rr3 such that xBiy, yBix, X&Z, and y&z. The functions 01~ and yi 
break the indifference between x and y in opposite directions: ai(x M yz) = 
(y x z) and y& w  y z) = (x y z). Function yi on Table III is admissible 
as a component of a regular tie-breaking function because the strong 
ordering Qi = (x y z) describes how yi breaks indifference between the 
elements of S, . Function 01~ , however, is not admissible as a component 
of a regular tie-breaking function because, for instance, it breaks 
indifference between y and z in both directions: q(x y m z) = (x z y) 
and c+( y w  zx) = (yzx). 

Based on this definition of regular tie-breaking functions, I define a 
regular voting procedure to be any voting procedure I.? which can be 
written such that, for all B E z-~“, 

Pm(B) = v”“[y(B)] (33) 

where v”” is a strict voting procedure and y is a regular tie-breaking 
function. Similarly, I define a regular social we&e function to be any 
social welfare function unnz whose range is contained in pm and which can 
be written such that, for all B E TV”, 

un”W = P’%(B)1 (34) 

where prim. is a strict social welfare function and y is a regular tie-breaking 
function. Notice that the range of a regular social welfare function is 
limited to pm instead of 7r, . 

With these definitions in hand I shall in the remainder of this section 
state and prove Theorems l’, 2’, and 3’. These theorems generalize 
Theorems 1, 2, and 3 from strict to nonstrict committees. In their proofs I 
shall use the results from three additional lemmas that I also state and 
prove in this section. These lemmas, which have interest in their own right, 
show how strategy-proof voting procedures and social welfare functions 
satisfying CS, NNR, and IIA can be decomposed into tie-breaking func- 
tions and, respectively, strict strategy-proof voting procedures and strict 
social welfare functions satisfying PO and IIA. 

hMMA 9. Consider a committee (I, , S, , Pm, T,>. If, for all B E rrmn, 
v”“(B) = v”“[y(B)] where Pm is a strict strategy-proof voting procedure 
and y is a regular tie-breaking function, then vnm is strategy-proof. If vnm 
is strategy proof, then there exists a strict strategy-proof voting procedure 
vnm and tie-breaking function 01 such that, for all B E rrm”, P”(B) = 
V@(B)]. 

Proof. Suppose a strict strategy-proof v”” and regular tie-breaking 
function y(B) = [y,(B,),..., yR(B,J] exist such that the voting procedure 
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Pm(B) = Pyy(B)] is not strategy proof. Therefore, a B E 7~~~ exists at 
which vnm is manipulable: 

vnm B ( 1 ,..., B,',..., B,,) &vnm(B1 ,..., Bj ,..., B,) (35) 

where Bj' ETT~. Let C = y(B). Since vnnz is assumed decomposable: 
v,,(B, ,.,., B,',..., B,J = vnm [Y,(&),-.., yABj’),.*., ~vz(Bn)l = v(G..., Cj’,**-, 
C,) = x and vnm(Bl ,..., Bj ,,.., B,J = vnm[yl(BJ,..., yi(Bj),..., yla(Bn)] = 
Vnm(Cl y...p Cj yo..y C,) = y where x, y E S, . Relationship (35) imphes 
xB,y which in turn implies xCjy. This allows us to substitute vnm for 
21”~ in (35): 

vnm ( Cl ).. .) Cj’,. ..) C,) cjvyc, )...) cj )...) C,), (36) 

i.e., vnm is manipulable at (C, ,..., Cj ,..., C,). Consequently, our assump- 
tion that vnm is strategy-proof is contradicted. 

Consider the lemma’s second proposition now. I start with a strategy- 
proof vnm and must show that there exists a strict strategy-proof vnm and 
tie-breaking function CL such that, for all BETTOR, Pm(B) = vnm[a(B)]. 
First, I define the strict voting procedure vlzm such that vnm(Bl ,..., B,J = 
vnm(B1 ,..., B,) for all BE pm". This definition guarantees the strategy- 
proofness of vnm because vnm, by virtue of its strategy-proofness over its 
domain rr,“, cannot be manipulated at any point in the domain pm” of vnna. 

To complete the proof I must construct tie-breaking functions 
a = (011 )...) an). An iterative process of first finding an appropriate (pi , 
then an appropriate 01~ , and so on through 01, works. Consider an arbitrary 
ballot set B E rrnzn and suppose I have found, for some j E I, , appropriate 
oli for all i < j, i.e., 

vnm(Bl ,..., Bj ,..., B,) = vnm(+(B),..., aiwl(B), Bj ,..., B,) = x. (37) 

Further suppose I cannot find an appropriate tie-breaker oli, i.e., for 
every clj 

vi""(q(B),..., GI@), dB)> &+I ,..., Bn) = Y, (38) 

where y # X. Pick any aj such that (38) is true. Let Ci = ai for all 
i < j. The assumption that v lz* is strategy-proof implies two conditions: 

NV~~(C’~ p.e.3 Cj-ly Bj 3 Bj+l ,mee, Bn)CjVnm(Cl p..., Cj-1) Cj 9 Bj+l ,aea,B,) 

and (39) 

NV”~(CI pa.., C’j-1 y  Cj 3 Bj+l ,.eep Bp+)BjVnm(Cl ,..., Cj-1 3 Bj 3 Bj+l ,eem, B,). 

(4) 
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These may be rewritten, based on (37) and (38), as wxCjy and -yBjx. 

Since Cj = oli(B), x&y would imply XC? y. Nevertheless, -XC? y; there- 
fore -x&y. Together -x&y and -y&x indicate indifference between 
x and y on ballot Bj . Moreover, since Cj E pm , wxCjy implies yC+. In 
summary, strategy-proofness of vnm implies xB, y, yBjx, and yzi$x. 

The conclusion is clear: if, for a strategy-proof vnm, breaking the tie on 
ballot Bi changes the committee’s choice from x to y, then necessarily the 
ballot Bj ranks x and y indifferently and the tie-breaker 01~ moves y above x. 
This conclusion, however, contradicts the assumption that no appropriate 
01~ exists. Let o+’ break the tie between x and y in favor of x instead of in 
favor of y. The conclusion stated above implies that no change in the 
committee’s choice can result because olj’ breaks the indifference in favor 
of the committee’s original choice. Therefore aj’ is an appropriate (Ye . 
Since my original choices of both j and B = (B1 ,..., B,) were arbitrary, 
I can find an appropriate aj(B) for each j E 1, and each B E 7~,,“. 1 

THEOREM 1’. Consider a committee (I, , S,, , v”*, T,) where n > 2 
and m > p > 3. The voting procedure vnln is strategy-proof only if it is 
dictatorial. 

Proof: The proof follows from Lemma 9 which states that since vnm is 
strategy-proof it can be written u”~(B) = v*“[ol(B)] where vnm is a strict 
strategy-proof voting procedure and 01 is a tie-breaking function. By 
Theorem 1, V(C) = fri(C) = Yr(CJ for some i E 1, and all C E pm”. Let 
Ci = q(B). Therefore, for all B E 7rmn, v”“(B) = YT[ori(B)] = fTi(B) 
because fTi implicitly incorporates the component tie-breaking function 
%* I 

LEMMA 10. Consider a committee (I, , S, , unm) where n > 2, m > 3, 
and unm is a social welfare function with domain rrmn and range contained 
in pm. IL for all BE nmn, u%“(B) = pCL”“[~(B)] where y is a regular tie- 
breaking function and p is a strict social werfare function satisfying IIA, CS, 
and NNR, then unm satisfies IIA, CS, and NNR. If u”” satisfies IIA, CS, 
and NNR, then there exists a tie-breaking function 01 and a strict social 
welfare function p nm satisfying IIA, CS, and NNR such that, for all B E 7~,~, 
u”“(B) = /F[~Y(B)]. 

ProoJ Suppose that y = (yl ,..., yn) is a regular tie-breaking function 
and pnrn satisfies CS, NNR, and IIA. Let un”(B) = p”“[y(B)]. Obviously, 
since pnrn satisfies CS and, by definition, unm and pnrn have identical ranges, 
ZP~ satisfies CS. Suppose, however, that unm does not satisfy IIA. Con- 
sequently, there must exist a B E .rr,“, a C E nmn, and a U C S, such that 



STRATEGY-PROOFNESS AND ARROW’S CONDITIONS 213 

K%(Bd,..., 4A&Jl = [MCI),..., MCJI and YuVB) f !J’d-U where 
u”“(B) = AB and u”“(C) = Ac . 

Let B’ = (B,‘,..., B,‘) = [yl(B1) ,..., m(B3], C’ = (Cl’,..., C,l) = 
[am,..., yn(Cn)], p.““(B) = AB’, and pLnm(C’) = A,‘. Observe that the 
definition of unm implies that A, = Ag’ and A, = A,‘. Also 
observe that [B&B,‘),..., O,(B,‘)] = [ev(C,‘),..., e,(C,‘)] because the 
definition of regular tie-breakers guarantees that, for all i E I, , 
e,[~,(&)] = e,[y,(C,)] if &(BJ = e,(C). Since pWrn satisfies IIA, these 
last two results mean that Y&4,‘) = Y&t,‘) and Yu(AB) = Y”(A,). 
But this contradicts the assumption that Y/JAB) # Yy,(A,). Therefore, 
ZF~ must satisfy IIA. A similar argument can be constructed to show that 
unm must satisfy NNR. 

The proof of the lemma’s second proposition parallels the proof of the 
second proposition of Lemma 9. Assume unnz satisfies IIA, NNR, and CS. 
Define the strict social welfare function pnrn such that prim(B) = unm(B) 
for all B E pmn. Obviously p”” satisfies NNR, CS, and IIA. Consider an 
arbitrary B E TT,,” and suppose, for some j E 1, and all i < j, appropriate 
O!i exist: 

unn(B1 ,...y Bf-1 )...) B,) = unrn[~l(B),..., aj-l(B), Bj )..*, B,] = A (41) 

where A E pnz . Assume an appropriate tie-breaker ai does not exist, i.e., 
for all iuj 

zP”$Y~(B),..., q-@), 4% &+I ,..., Bn) = A’ (42) 

where A’ E pm and A’ # A. Pick any olj such that (42) is true. Therefore, 
some x, y ES, exist such that X~Y and ud’x. Let Bj’ = z,(B). Observe 
that IIA implies that the difference in how A and A’ rank x and y must stem 
from a difference in how Bj and Bj’ rank x and y. Two conclusions follow 
from this observation, NNR, and the definition of aj : (a) XBjy and 
yBjx and (b) y&/x. Define (Y~* such that x&* y where Bj* = ori*( NNR 
in conjunction with x;rY implies that xA*y where A* = z.P~(..J+~(B), 
ai*( B,,, ,...). Thus q* is a component tie-breaking function that 
works. i 

THEOREM 2’. Let n > 2 and m 2 3. A one-to-one correspondence X 
exists between every regular strategy-proof voting procedure vnm and every 
regular social welfare function satisfying CS, NNR, and IIA. If unm = 
X(ZF), then unln uniquely underlies vn” and vam is uniquely derived from 
u”” 

This theorem generalizes Theorem 2 only to regular strategy-proof voting 
procedures and regular social welfare functions satisfying CS, NNR, and 
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IIA. It does not generalize further for two reasons. First, those strategy- 
proof voting procedures that are not regular do not have underlying 
social welfare functions. An example of such a case is the dictatorial 
voting procedure v”“(B) = f,-Q?) where fsi[& = (x = y M z)] = z and 
fsi[Bi = (x w  z y)] = x. Inspection shows that no social welfare function 
zPna satisfying CS, NNR, and IIA exists such that Y,[unm(B)] = y/(B) for 
all B E 7~~“. Second, if a social welfare function has a range that both 
strictly contains pm and is contained in VT,, then, for some B E rrmn, 
Ys[unm(B)] will be a set with at least two elements. Therefore, because 
voting procedures have single element images, Y.Ju”l”(B)] does not 
define a voting procedure. 

Proof: Let V represent the collection of strategy-proof voting proce- 
dures vnm and Q represent the collection of social welfare functions unnz 
that satisfy CS, NNR, and IIA. The subscript R indicates restriction of 
the collections Y and @ to regular voting procedures and regular social 
welfare functions, respectively. Similarly, a subscript S indicates restriction 
of the collections V and @ to strict voting procedures and strict social 
welfare functions, respectively. By definition each unna E gR can be written 
as p[y(B)] where p is a strict social welfare function and y is a regular 
tie-breaking function. Clearly p satisfies IIA, NNR, and CS, i.e., ,LL E @‘s .l” 
Theorem 2 states that there exists a unique v E Vs which is derived from 
p, Thus, for all C E pmn, 

ul,b4C)l = 40 (43) 

Detine Pm such that vnm(B) = v[y(B)]. Observe that vnm is both regular 
and, by Lemma 9, strategy-proof, i.e., vnm E ryk . Let y(B) = C for all 
B E rr,“. Substitution for C in (43) gives Y,(p[y(B)]} = v[y(B)] which 
simplifies to Ys[unm(B)] = v”“(B). Therefore a vlaln E VR can be derived 
from every u”m E aR . Moreover, vnm is uniquely derived from unm because 
Ys[unm(B)] is a single-valued function when unrn E @!R . 

By definition every vnm E VR can be written v[y(B)] where v is a strict 
voting procedure and y is a regular tie-breaking function. Clearly, v is 
strategy-proof, i.e., v E Vs . Theorem 2 guarantees that a unique p E %s 
exists such that (43) holds. Define Z.P~ such that unm(B) = p[y(B)]. 
Lemma 10 implies that unrn E %!R . Substitution into (43) gives 

Y#m(B)] = tF(B). 

lo Suppose p $ ‘Zs . This implies that unm does not satisfy IIA, NNR, and CS over the 
domain pm”. Therefore, un+” does not satisfy IIA and NNR over the domain n,“. More- 
over, since u”“(B) = &J(B)] for all B E r++O, if p does not satisfy CS over p,,,“, then u,,,” 
does not satisfy CS over the domain q,, *. Therefore, if u E 9, , then p E +Ys . 
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Therefore a unln E aR underlies every v”” E 9’jR . Moreover, the Pm E GPR 
underlying each vBm E ryk is unique. This is shown by making minor 
changes in the uniqueness proof contained in Section 4. 

Let u* be any element 4!ZR and let v* E VR be the unique voting proce- 
dure derived from it. Since YJu*(B)] = v*(B), U* is the unique element 
of 9XR which underlies v*. But every vnm E VR has its unique unm E GVK 
underlying it. Thus, the correspondence h exists and is one-to-one. 1 

LEMMA 11. Consider a committee (I,, , S,,, , unlra) where n 3 2, m > 3, 
and unm is a social welfare function. Let y be an arbitrary regular tie- 
breaking function and dejne the social weIfare function prim such that, for all 
BE i-rr,“, 

pn”(B) = y[un”(B)]. (44) 

If unm satisfies CS, NNR, and IIA, then pn* has range contained in pm and 
satisfies CS, NNR, and IIA. 

Proof. Assume that Pm satisfies CS, NNR, and IIA. Equation (44) 
and the definition of y directly imply that the range of parn is contained in 
pm . They also imply that pn” satisfies CS. Suppose CL”* violates IIA: 
a B E rrmn, C E rrmn, and U C S,,, therefore exist such that [&,(B,),..., 
ML)1 = W,4GL., &(C,)] and YLIwm(B)] # YUwm(C)]. Never- 
theless, Y,[unm(B)] = Y&~~(C)] because unm satisfies IIA. Moreover, 
YU{y[u”m(B)]> = Yu{y[u”m(C)]} because y is regular. This contradicts the 
assumption that YUv”(B)] # YUbm(C)]. 

Suppose parn violates NNR: a B = (B1 ,..., Bi ,..., BJ E vmn, a Bi’ G rrm , 
Bi f Bi’, and a x, y E S,,, exist such that yBdx, xB;y xAy, and yxx where 
A = unn(B1 )..., Bi )...) B,) = prim(B) and A’ = pnm(B1 ,..., Bi’ ,..., B,) = 
pnm(BI). In addition Bi and Bi’ have the property that e,(BJ = e,(B,‘) 
where U = S, - (x). Let u”~(B) = A* and unlla(B’) = A*‘. Since 
A = y(A*) and A’ = y(A*‘), consistency with the definition of y implies 
that either Gi*y and yA*‘x or xA*y and yA*‘x. Nevertheless, Z.P satisfies 
NNR. Application of NNR to u”“(B) and u”“(B’) implies that if xA*y, 
then xA*‘y and if xJ*y, then xA*‘y. Thus, for pnrn to violate NNR 
contradicts the assumption that unln satisfies NNR. B 

THEOREM 3’. (Arrow). Consider a committee (I,, S, , unm) where 
n > 2 and m > 3. The social welfare function unm satisfies CS, NNR, and 
IIA only tfit is dictatorial. 

Proof. Assume that unm satisfies CS, NNR, and IIA. Lemmas 10 and 
11 imply that an arbitrary regular tie-breaking function y, a strict social 
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welfare function ZL satisfying CS, NNR, and IIA, and a tie-breaking 
function 01 exists such that 

rCu”“(Wl = PW)I (45) 

for all B E rrmn. Pick U = (x, y). Set Q E pm , the tie-breaking order for y, 
such that xQy. Theorem 3 states that because p satisfies CS, NNR, 
and IIA it is dictatorial. Assume that individual i is the dictator of p. 

Let y’ be a regular tie-breaking function with tie-breaking order Q’ E pm 
such that yQ’x. As above, we can write 

y’[u”“(B)] = ,u’[a’(B)] (46) 

for all B E 7~~~. Suppose j E Z, is the dictator for p’ where j # i. Consider 
a ballot set C E nmn such that ycix and XCjy. The assumed dictators for 
Z.L and Z.L’ imply that y&x and xA,,‘y where A, = y(A) = y[u”“(C)] and 
A,’ = y’(A) = y’[u”“(C)]. This, however, is a contradiction. Recall that 
y and y’, respectively, have tie-breaking orders Q and Q’ such that xQy 
and yQ’x. Therefore, y&x implies y,& while xz’y implies xAy. Thus, 
i = j, i.e., Z.L and p’ have the same dictator. 

Suppose in Eq. (45) individual i is the dictator for p, but not for unm. 
Therefore, a C E rrmn exists such that for some x, y ES, , yC,x and 
~ydx where A = u”“(C). Since (I is dictatorial, yA*x where A* = p[a(C)]. 
Without loss of generality assume that the x and y of this paragraph are 
identical to the x and y of the preceding two paragraphs.ll Recall that Q, 
the tie-breaking order for y, has the property that xQy. Let A’ = y(A) = 
@““(C)l. Therefore, -yAx implies that xjI’y. But A’ = y[u”“(C)] = 
p[a(C)] = A* and, from above, yA*x. This contradicts the result that 
xA’y. Therefore individual i must be the dictator of unm. 1 
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